

Dimensional Engineering challenges to digitalization

José E. Ruede Gómez GMM TREC Director

04/26/2024

GM's vision to digitalization

• Faster to Market by reducing vehicle and component physical validation.

• First vehicle to be build is good for customer use.

• Increase and optimize use of CAE software tools for virtual validation with dimensional data/build variation input from manufacturing process.

Traditional Validation Process Old Strategy (component structural durability)

Input Output Durability 945 1000 900 800 Physical HOURS TO FAILURE 700 600 Testing 500 400 300 Target: 144 Hrs. 200 Nominal 3D model design **Design CAE Analysis: Parts from Production** 100 Formability, Max Stress, 0 Nominal durability Strain, etc.

general motors

Virtual Validation Process New strategy 2025

general motors

Run CAE analysis with variation and manufacturing processes

Vehicle level Plumbing Durability

gm

Virtual by 2025: Wire Harness simulation

IPS Cable simulation

IPS Cable Simulation: What it can do for wiring harnesses.

Bundle behavior estimation

• Bundle physical properties can be estimated.

Tolerance Envelopes

- Envelopes including length tolerances can be created
- Tolerance envelopes can include motion.

Harness Deformation

• Harness can be deformed in collision applying Forces/Contact with solid componets

IPS Cable Simulation: What it can do for Wiring Harnesses

Flexible Cables simulation

- Length optimization.
- Physical phenomena cable applied (force, bend radius.. etc).

Collision detection

Cable deformation during collisions

Roll simulation

• Dynamic/static simulation (roll, jounce/rebound).

Virtual Validation Example	 Harness outside diameter= manufacturing variation (+%) + Future growth (+%). Bundle package tool created on IPS (green)= Length Tolerance + X.X mm. 	m
Component:	Model results:	9
Door wiring harness design	 Harness variations * Harness clearance criteria between harness breakout and map pocket panel (below switches)** 	

3D math data design (Nominal)

Moving from 2D Dimensional Boards to 3D Gages

Electrical Harness Dimensional Checking Evolution

From Traditional Wiring Harness built onto a 2D Board

Issues with the component:

- × Late design changes due to dimensional variation from manufacturing process.
- × Low part repeatability.
- High disconnection between math data vs physical part.

Moving from 2D Dimensional Boards to 3D Boards

Electrical Harness Dimensional Checking Evolution (CONDUMEX EXAMPLE)

To 3D boards representing harness installation on vehicle

Benefits:

- ✓ Increase dimensional fidelity to 3D math.
- ✓ Reduce assembly/ warranty issues.
- ✓ Part repeatability.

